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Abstract-Solidification of an alloy by cooling the vertical sides of a rectangular mold is considered. By 
estimates o F the order of magnitudes of terms in the governing equations, a parameter range map is derived. 
This contains 14 entries, each of which signifies a particular set of qualitative properties of the solidification 
process. In each case, quantitative estimates for solidification time, degree of undercooling and segregation, 
arc given. The qualitative and quantitative estimates are confirmed and illustrated by timedependent numeri- 

cal simulation of a few typical solidification histories. 0 1997 Elsevier Science Ltd. All rights reserved. 

‘I. INTRODUCTION 

The properties of an alloy are to a large degree deter- 
mined by liquid flow phenomena during solidification. 
Thermal convection in the melt determines the heat 
transfer and thus influences the crystal structure. Also, 
solutal convection due to enrichment of additives dur- 
ing solidification, may cause an enriched region at the 
top of the sample, so called macro segregation. As 
a prototype of cases that arise in industrial casting 
processes, this paper deals with cooling at a vertical 
boundary, as indicated in Fig. 1. During solidification, 
the mold is typically divided into three regions, liquid, 
solid and mush. The latter is a two-phase region con- 
sisting of melt slowly seeping through a forest of solid 
crystals (dendrites). Other flow phenomena in sol- 
idification are reviewed by Huppert [ 11. 

In the last decade, significant progress has been 
made in the mathematical modelling of binary sol- 
idification. Solidification simulations that predict 
liquid motion, temperature and composition, and thus 
segregation, are now possible. A far from complete 
list of such studies is Refs. [2-81. A few quantitative 
comparisons with experiments, with varying success, 
have also been reported [3-81. However, simulated 
results are usually presented in dimensional units for 
particular systems and it is difficult to draw any gen- 
eral conclusions that would apply to other systems. 

A well known qualitative feature of different modes 
of freezing in casting processes is the ‘freezing range” 
[9]. For an alloy of short freezing range, the mushy 
zone is narrow compared to the width of the casting. 
This type of freezing occurs in practice in casting of 
for example pure metals, low carbon steels and com- 
mercial copper, aluminum, zinc and tin. The long 
freezing range is characterised by the absence of dis- 
tinct solid and liquid regions. The mush fills the entire 
mold and crystals form and grow throughout the cast- 
ing. Examples of alloys that solidify in this manner 

are aluminum alloys, magnesium alloys, tin bronzes 
and red brass. There are also examples of intermediate 
behavior. In such cases the freezing process is “quite 
sensitive to the rate of freezing” [9], indicating that 
the freezing range is not determined by the material 
properties alone, but also by the solidification process. 

Since there are a number of different phenomena at 
play during solidification, even a qualitative under- 
standing is difficult. Scaling analysis has been used to 
discuss various solidification problems without a 
mush [l&12]. The instabilities leading to chimney 
formation in a mush growing from a horizontal sur- 
face are discussed using scaling arguments and non- 
dimensional formulations [13-l 51. The scaling analy- 
sis of free convection of a simple liquid in enclosures 
is well known [16, 171. However, the scaling laws and 
the different parameter ranges of the complete freezing 
proces$ for alloys solidifying from a vertical boundary 
has received very little attention in the past. 

An experienced material scientist can often tell 
whether a particular solidification experiment will 
show large or small macrosegregation, dendritic or 
equiaxed crystal structure etc. Scaling laws are not 
established however, and it is thus difficult to extrapo- 
late results to processes that are less well known. 

It is the purpose of this paper to attempt a scale 
analysis of binary solidification problems, taking into 
account the most important flow, heat and mass trans- 
fer phenomena. The study is restricted to low Prandtl 
number liquids, with prescribed heat flux cooling at 
vertical walls. The main result is a table identifying 
qualitatively different parameter ranges. Rep- 
resentative cases are simulated numerically in order 
to test the qualitative and quantitative predictions. 

2. FORMULATION 

A two-dimensional, rectangular mold initially filled 
with a melt of uniform temperature Ti and com- 
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NOMENCLATURE 

A = H/B aspect ratio 
B width of container [m] 
Bo = agATs - H4/rc2 liquid region 

Boussinesq number 
Bo, = pgq(l/k,- 1) * H3/D2 solutal 

Boussinesq number in liquid region 
C specific heat [J kg-’ K-‘1 
c concentration [dimensional] 
D mass diffusivity [m’ s-l] 
Da = fi/B Darcy number 
G, reference permeability [m’] 
H height of container [m] 
k thermal conductivity in liquid w m-’ 

K-‘1 
k, partition ratio, c,/c, in mush 
L latent heat of fusion [J kg-‘] 
Le = K/D Lewis number 
p = p’&,lc*/B*) pressure (p’ is dimensional) 
Pr = V/K Prandtl number 
4 prescribed heat flux at cooled wall 
Ra,,, = (/3/r - ct)gBG,AT,,,/(w) mush 

Rayleigh number 
St = Lk/(CqB) Stefan number 
St, = L/CAT,,, mush Stefan number 

(AT,,, = Tq(l/k,- 1)) 
St, = L/(CAT,) superheat Stefan number 

(AT, = T- TL(c~)) 
t = t’/(B’/rc) nondimensional time (t’ is 

dimensional) 
T temperature [K] 

TJc,) = To-l-c, liqiudus temperature 
u = u’/(K/B) velocity vector 
x = x’/B position vector (nondimensional). 

Greek symbols 
tl thermal expansion coefficient 
B solutal expansion coefficeint 
I- slope of liquidus line [K (wt frac)-‘1 
6 nondimensinal estimate of mush width 
q = (c - ci)(k,/ci( 1 -k,,)) nondimensional 

concentration 
0 = (T- TL(ci))(k/qB) nondimensional 

temperature 
K thermal diffusivity [m’ s-‘1 
V kinematic viscosity [m* s-‘1 
P density [kg m-‘1 
4 local solid volume faction. 

Subscripts 
C numbers characterising solutal 

convection in the melt 
cc cessation of convection 
cs complete solidification 

; 
initial values 
liquid phase quantity 

m mush or mixture quantity 
r reference quantity 
S solid-phase quantity, or number 

characterising superheat. 

gravity 

Fig. 1. Sketch of the geometry. 
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position ci is considered, see Fig. 1. Top and bottom 
are insulated and a constant heat flux q (Wm-‘) is 
prescribed at vertiscal sides. This is rather restrictive 
but can be approximately realised if the major tem- 
perature drop from melt to surroundings is over the 
crucible wall. It has been adopted for simplicity and 
in order to focus attention on basic solidification. 

The process is governed by the fundamental con- 
servation laws and thermodynamical relations descri- 
bing equilibrium phase change [ 181. The standard 
Boussinesq approximation is invoked, which also 
imulies that solidification shrinkage is neglected. The 
conservation of linear momentum, mass, heat and 
solute can be written in the following form, appro- 
priate in the mush (0 < Cp < 1) and the solid 
(C$= l,u=O): 

$Jg +“.v”)-.Da*V’” = - gvp 
G 

-ey*Ra;qI-&u (1) 

V*((l-C#J)u) = 0 (2) 

; +(l-$:iu.ve = v.(k,/k)Ve+@ (3) 

% $_V.(“(l-+)q,) = hv*1,. (4) 

Here II = (u, v) denotes the nondimensional fluid 
velocity, averaged over the pore spaces. p is pressure, 
0 temperature, ‘I, normalised weight fraction of solute 
in the melt, 41 local solid volume fraction. 
k,,, = (1 - 4)k+ & is the mixture thermal con- 
ductivity (k, k, al-e liquid and solid thermal con- 
ductivities). The permeability function G(4) mul- 
tiplying the Darcy term in eqn (1) was chosen as : 

(34) = Hoh(4)/(1- 4) (5) 

where h(4) is a nondimensional function chosen 
according to [7, 191, H, (m’) gives the magnitude of 
the permeability in the mush. This makes the Darcy 
term dominating in the mush (0 < 4 < l), and van- 
ishing in the liquid (4 = 0). G, is equal to G(&), with 
l#J, = 0.2. 

Three additional relations are needed to close the 
system : 

rm =(1-4)r, +h (6) 

e= -& (7) 
m 

rls = (VI- l)k,. (8) 

Equation (6) is the definition of mixture com- 
position q,,, (Q = solid composition). Equation (7) is 
the liquidus line of the equilibrium phase diagram, 
stating that the local freezing temperature in the melt 
decreases linearly with increasing solute concen- 
tration. Equation (8) is the solidus line, which implies 

that the dimensional solid concentration is less than 
the liquid concentration by a factor k, < 1. Implicit 
in this formulation is the commonly used assumption 
of rapid mass diffusion within a dendrite arm (the 
‘lever rule’) [20]. 

The precise definitions of the nondimensional vari- 
ables are given in detail in the Nomenclature table. 
They are based on the width B, the time for thermal 
diffusion over half the width of the sample, and qB/k 
as the typical temperature difference. The typical con- 
centration change is obtained from the phase diagram 
as ci( 1 /k, - 1), the melt concentration increases during 
freezing, in the absence of macroscopic solute trans- 
port. Where there is a chance for confusion, a prime 
designates a dimensional variable. 

Several nondimensional numbers appear, see defi- 
nitions in the Nomenclature. Pr, is assumed to be less 
than unity for liquid metals, Le = K/D is typically 
0(104) or more. St is a Stefan number based on the 
typical temperature difference qB/k. Ra, is a Rayleigh 
number appropriate for convection through the 
porous mush [13, 151. St,,, is a Stefan number based 
on the typical temperature difference over the mush, 
AT,,, = Tci(l/k,- 1). The Darcy number Da may be 
interpreted as a ratio between a characteristic micro- 
scopic length, i.e. dendrite dimensions, and the width 
of the container. This parameter is not independent 
from those listed previously, but is retained due to 
its physical interpretation. It is typically quite small, 
O(10m3) or less. 

In the liquid region the appropriate nondimensional 
form of the equations is, using C$ = 0, and q,,, = q, : 

dU 
at +u*Vu = -Vp+PrV*u 

Boc 
+v1- 

Le2 A3 
eY (9) 

(11) 

(12) 

Here A is the aspect ratio H/B, which is assumed to 
be O(1). Bo is a Boussinesq number (Bo = Pr * Ra) 
based on the initial superheat AT, = T - TL(ci). Bo, 
is a solutal Boussinesq number based on the typical 
concentration difference and mass diffusivity. St, is a 
Stefan number based on the initial superheat, 
AT, = Ti- TL(CJ. 

The nondimensional formulation is complete when 
the boundary and initial conditions have been listed. 
These are : 

y=O,A: 
ae ah u=v=-_=-_=O 
ay ay 

(13) 
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x=0: u&=E=%=o 
ax ax ax (14) 

x=1: u=v=ar”=o ae 
ax 

1 &’ -1. (15) 

The initial conditions are : 

u=O, Q=$ q,=O, &=O att=O 
s 

(16) 

3. DERIVATION OF PARAMETER RANGES 

In this section we will identify qualitatively different 
solidification histories, in terms of the numbers A, Bo, 
Bo,, Le, Pr, Rk,, St, St,,,, St,. Due to space limitations 
the derivations are brief, a more detailed account is 
given in the report [21], which is available from the 
author upon request. Solidification is followed from 
the molten state and the different possibilities are 
noted in Tables 1 and 2. 

Case 1. Excess superheat ; no mush formed initially 
If the temperature of the cold wall does not fall 

below the liquidus temperature when cooling starts, 
the mold remains completely liquid for some time, 
see categories 1.x in Tables 1 and 2. Using standard 
estimates [22], this situation can be shown to occur if: 

Bo’/4St 
St;A 

> 1. (17) 

This prevails until the specific heat associated with a 
bulk temperature drops from T, to TL(c,)+ATbl 
(ATi,, = boundary layer temperate drop) has been 
removed : 

trsh =&(I-(&.Bo’l“)l15). (18) 

At this time, the characteristic temperature of the 
bulk liquid is TL(c,) + AT,,, and the subsequent evol- 
ution is considered as starting from trsh with values for 
Bo and St, based on this bulk temperature, i.e. : 

Bo = (A * Bo * St,/St)4’5 St, = St/A(A * Bo * StJSt)“‘. 

Here it has been assumed that thin boundary layers 
appear. If this is not true we have a rather unlikely 
conductive case, summarised as 1.2 in Table 1. 

Case 2. Mush appears immediately 
If criterion (17) above is not satisfied, or at times 

greater than trsh, a mush appears on the cold wall. 
There are then three different characteristic tem- 
perature differences; AT,, qB/K and AT,,,. AT, = 
T, - T,(q) is typical of the initial temperature vari- 
ation over the liquid region. AT, = TL(ci)- 
T,(q) = Tc,(l/k,-- 1) is characteristic of the tem- 
perature difference across a mush zone. 

Case 2.1. Low cooling rate andsuperheat, wide mush 

AT, < qB/k < AT, ct St, > St > St,,,. First we note 
that the mush width can be estimated easily : 

6, = St/St,,, = AT,,,/(qB/k) -(width of mush)/B. 

(19) 

If St/St,,, > 1, as in this particular range, the interpret- 
ation is instead that the mush covers the entire mold, 
with a solid fraction variation - St,/St < 1. 

Next we use eqn (3) to estimate the magnitude of 
different contributions to heat transfer through the 
mush and solid : 

(20) 

12 34 

Terms l-4 represent specific heat, convection, con- 
duction, and release of latent heat, respectively. Here 
we have used 4 - q, - 0( 1) (complete solidification), 
and thus, from eqn (7), 8 - St/St,,,. In the estimation 
of term 3 the thermal boundary condition at x = 1, 
(14), has been used. In the momentum equation (l), 
the main balance is between the buoyant and the 
Darcy terms for small Da, implying that ]u] - Ra, in 
the mush. 

To estimate the time scale t, we assume that term 2 
can be neglected since it is multiplied by the mush 
Rayleigh number Ra,, which is not large in appli- 
cations. Term 3 represents the driving force (sidewall 
cooling) which must be balanced by either term 1 or 
4. 1 - 3 gives an estimate of the time for complete 
solidification as t_ - St/St,, valid if St, < 1. This is 
summarised as case 2.1(a) in Table 1. The opposite 
possibility, 3 - 4, implies that tcs - St and requires 
that St,,, > 1, see 2.1(b) in Table 1. Note that the 
limiting term in the heat budget is the specific heat 
associated with AT, in 2.1(a) and the latent heat of 
fusion in 2.1(b). 

A metallurgically important property is the exis- 
tence of an equiaxed zone, where crystals grow in the 
interior of an undercooled melt. If the bulk liquid has 
effectively reached the temperature of the edge of the 
mush, any slight under-cooling will spread into the 
liquid region, and the formation of an equiaxed zone 
will be promoted. The time when this happens can be 
estimated as the time t, when the flow ceases to have 
boundary layer character, see Appendix 1. The con- 
dition for the appearance of undercooling is now that 
the liquid region should persist beyond this time, i.e. 
L ) LC where t,, - 1 according to (A1.3). In case 
2.1(a) in Table 1, t,, - St/St,,, > 1 - t,,. Similarly for 
case 2.1 (b) t,, - St > St,,, > 1 - tee. Thus a large equi- 
axed region could appear for both cases. 

Another property of interest is macrosegregation, 
which is estimated in Appendix 2, the results for 2.1 (a) 
and (b) are given in Table 1. These two parameter 
ranges are the two most favourable for segregation. 

Case 2.2. High cooling rate, mush temperature 
difference greater than superheat, narrow mush 
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Table 1. Summary of parameter ranges 
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1.1. Large initial superheat, no mush inirially. 
BoW/(A * &St,) > 1 (Bo *A * st,/stp5 > A. 
no mush forms until I’ > trsh = St/(,4 * &)(l - (St/(‘4 * St,) * Bo”4)-4’5) 
At I > trsh use range 2. with modified Bo, St, : 

Bo = (A * St,/3 * Bcy’5 & = St/A(A * S&/St * Bo)“~ 

1.2. Low cooling rate and large superheat, no mush initially. 
Bo”%t/(A * Sr,) > 1 (Bo * A * St,/St)“5 < A. 
no mush forms until ! > trsh = Sr/Sr, 

At t 2 tmh use range 2 with modified Bo, St, : go = S&/St * Bo & = St 

2.1. Low cooling rate and superheat, 
wide mush: 
St, > St > 9, 
Bo”%t/(A* St,) < 1 

2.2. High cooling rate, mush temperature 
difference superheat, narrow mush 
St, > St, > St 
Bo”~ St/(A * St,) < 1 
* 6, = St/S& < 1 

2.3. High cooling rate, superheat > mush 
temperature differenne, narrow mush 
St, > St, > St 
Bo”%r/(A * St,) < 1 =c 6 = St/St, < 1 

2.4. Very low cooling rate, mush 
temperature different? > superheat. 
St > St, > sr, 
Bo”%t/(A - Sr,) < 1 
=z.Bo<l 
2.5. Very low cooling rate, 
superheat z mush temperature difference. 
St > St, > St, 
Bo”%/(A. St,) < 1 
*Boil 
2.6. Very low cooling rate and mush 
temperature difference. 
St, > St > sr, 
Bo”%t/(A. S&) < 1 
-Boil 

2.1 (a) Small latent heat, St,,, < 1. 
solidification time : t,, - St/St, > 1 
undercooling : undercooling at t - tee 
estimate of segregation : aI (6, Q * Ram - .%,l(AW 
2.1(b) Large latent heat, St, > 1. 
solidification time : 1,, - St > 1 
undercooling : undercooling at t - t,, 
estimate of segregation : aI (&, k,) * Ra,,, * St,i/(ASt) 
2.2(a) Small latent heat, Sr < f(St/St,,,). 
solidification time : L, -fW%)lA < 1 
undercooling : no undercooling (t,, -c t, - 1) 
estimate of segregation : 44, h) * Ra&WS~,)f(S~/S&J/A 

2.2(b) Large latent heat, St > f(St/St,). 
solidification time : t,, - St 
undercooling : undercooling if St > 1 (1 - t..) 
estimate of segregation : a(&, k,) . &,,St2/(S&,d) 
2.3(a) Small latent heat, St < f(St/St,). 
solidification time : c - f(sr/st,) < 1 
undercooling : no undercooling (t, -c t, - 1) 
estimate of segregation : 4A k,) . Ra,W/S&J f(WWA 
2.3(b) Large latent heat, 3 > f(St/St,). 
solidification time : t,, - St 
undercooling : undercooling if St > 1 (1 - t,,) 
estimate of segregation : a(&, k,) * Ra,S~2/(Sk,A) 
2.4(a) Small latent heat, St, < 1. 
solidification time : t,, - St/St, > 1 
2.4(b) Large latent heat, St, > 1. 
solidification time : t,, - St > 1 

2.5(a) Small latent heat, St. < 1. 
solidification time : t,, - St/St, z 1 
2.5(b) Large latent heat, St, > 1. 
solidification time : t,, - St > 1 

2.6(a) Small latent heat, St, < 1. 
solidification time : t,, - St/St, > 1 
2.6(b) Large latent heat, St, > 1. 
solidification time : t,, - St > 1 

Here 

t = 0.57-~A+Bo-“~. 
Cc 

The segregation estimate 
j(c,-cJdA 

(c,, - cJ2B * H/2 ls 

for St, < St: a,(+,, k,) y $ 

where 
for St < St, : a2(& k,) 

Ra,U 
A 

a (+ k 
L ) P 

) = (1 -(I -k&M -4,) 

44% 

a,(d k ) = 9pp(1 -9r) 1) P 1-4,(1-k,)’ 
This expression estimates the relative size of segregated volume which has composition 

c. 

l-M-k,) 
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Table 2. Qualitative properties of the most important parameter ranges 

1.1 Large initial superheat, no mush 
initially. 

Bo1/4 St > 1 
A.St, 

Ic31 

2.1 A mush of approximately uniform solid 
fraction covers the mold. 

sts > St > St 

m 
Bo~‘~ St < 1 

A.St= 

II-_r.l~ 

2.2 

sts > stm > St 

Bol” St 5 1 
A.St; 

Mush forms a front. Distinct solid, 
mushy and liquid regions. 

2.3 

stm > sts > St 

Bol” St 5 1 
A.StB 

Includes the pure metal case. 

AT, < AT,,, -c qB/k ++ St, > St, > St. This range 
includes cases with very rapid solidification. The 
expected mush is narrow, 6, - St/St,,, < 1. The main 
contribution to the heat budget is the specific heat in 
the mush and solid regions, and convection is less 
important. 

The temperature must decrease by approximately 
AT,,, for complete solidification. The time required 
was estimated from a simple one dimensional heat 
diffusion problem : If Bi = 0 at t = 0, and a cooling 
rate %/ax = T 1 is maintained at x = & 1, the tem- 
perature at the centreline x = 0 is : 

-0 =f_‘(t) 

= 2(2Je-114’+erf(-$)-l). (21) 

A temperature decrease of AT, corresponds to a 
change of -St/St,,, in 8, so the estimated solidification 
time is 

Here the latent heat release has been neglected. If it is 
instead limiting, the nondimensional time required to 
remove the latent heat is t,, = St. If this is greater than 
the cooling solidification time f(St/St,), the latent 
heat is considered to be limiting, or vice versa, i.e. : if 
f(St/St,) > St, then t,, =f(St/St,), else to = St. 
These cases are summarised in Table 1 as 2.2(a) and 
2.2(b). 

In the case of 2.2(a), the time for complete sol- 
idification t, =f(St/St,) is always less than unity, i.e. 
t,, < 1 - t,, so that no undercooling of the bulk liquid 
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is possible. The narrow mushy region will always have 
time to traverse the container before the average tem- 
perature of the liquid has approached TL(ci). In case 
2.2(b) the criterion for undercooling is instead 
t,, = St > 1 N t,,. 

The segregation estimates for case 2.2(a and b) indi- 
cate generally low segregation. If the mushy layer is 
very narrow howe:ver, mass transfer through the mush 
may be diffusive rather than convective as assumed, 
and an enriched liquid region may result [ 11, 12, 2 1, 
231. 

Case 2.3. High cooling rate, superheat greater than 
mush temperature difference, narrow mush 
AT, < AT, < qB/k u St,,, > St, > St. This is a short 
freezing range case rather similar to 2.2. The only 
qualitative difference is that AT,,, is now the smallest 
temperature difference. This implies that, unlike case 
2.2, solidification of a pure substance is included as 
the limiting case St, -+ co (AT, -+ 0). 

Cases 2.4-2.6. No convection, Bo < 1. The remain- 
ing cases in Table: 1, 2.4-2.6, all satisfy St/St, > 1 and 
St/St, * Boll4 < 1, which implies that Bo < 1. These are 
thus the rather exotic cases where dimensions are so 
small etc., that convection is weak. Due to their limited 
usefulness, only t.he results for total solidification time 
are quoted in Table 1. 

4. EXAMPLES AND COMPARISON TO 
SIMULATIONS 

In order to te,?t the predictions in Table 1, these 
were compared to numerical simulations of a few typi- 
cal cases. Several additional cases have been tested by 
Amberg [21]. The numerical code that was used has 
been described elsewhere, [7, 81. Here it may suffice 
to say that it solves the equations in Section 2 time 
dependently in two dimensions. It has been validated 
by comparisons to experiments [8], and comparisons 
to known simple cases. 

The most important cases in Table 1 are 1.1, 2.1- 
2.3. The corresponding solidification histories have 
been sketched qu.alitatively in Table 2. In case 1.1 the 
initial superheat is so large (or cooling so slow) that 
the time to decrease the wall temperature to the liqui- 
dus temperature is appreciable. In case 2.1, which is 
typical of very slow cooling, a mush of approximately 
uniform solid fraction spans the cavity. During most 
of the process there are no solid or liquid regions, 
instead the solid fraction increases uniformly. Cases 
2.2 and 2.3 are typical for more rapid cooling. The 

solid and liquid regions are distinct and are separated 
by a thin mush advancing across the mold. 

As a starting point, the case simulated in Ref. [7], 
of an iron - 1% carbon system is investigated. The 
values of the nondimensional numbers for this system 
are : 

St = 1.806, St, = 72.24, St,,, = 3.354, 

A = 1.00, Bo = 4.033 * 105, Ra, = 2.490, 

Pr = 0.1742, Le = 5741., Bo, = 1.084. 1015. 

As seen here, Pr < 1, Le >> 1, and Bo, @ 1. Note that 
Bo, overestimates the importance of solutal con- 
vection in the liquid region, since it is based on the 
composition change across the mush. The flow in the 
liquid region is normally dominated by thermal con- 
vection [24, 7, 81, even if there are situations when 
solutal stratification and double-diffusive phenomena 

The predictions from Table 1 are listed in Table 3. 
It is seen that Bo”4(St/ASt,) has a value below one, 
indicating that a mush will quickly form on the cooled 

are important [4, 25-281. 

wall. The values of St, St, and St, above point to case 
2.2(b) in Table 1. 

The picture obtained from Table 1 is then that a 
mushy layer will appear on the cold wall more or 
less immediately after cooling has begun. The liquid 
region adjacent to the mush is then cooled by thermal 
convection until all the liquid has approximately 
reached the temperature of the mush front. The time 
for this to happen is estimated as t,, = 0.4127 in Table 
3. In the absence of undercooling, the mush will then 
rapidly invade the liquid region. With some under- 
cooling at the mush front, the entire liquid region is 
cooled to a temperature slightly below the liquidus, 
thus precipitation of free crystals inside the liquid 
is promoted. Here it will be assumed that the mush 
occupies the entire cavity at times greater than t,. 

The ratio 6, = St/St, may be interpreted as the 
(nondimensional) width of the mush, which in a “typi- 
cal” case 2.2 should be 6, << 1. Conversely, in range 
2.1,6, = St/St,,, > 1, the mush would cover the cavity 
and have a solid fraction variation of 0(1/S,). Here 
6, = 0.5386, which must really be considered as O(l), 
so that the mushy region is expected to span the entire 
cavity, and the variation of solid fraction is O(1). 
Solidification proceeds by a gradual thickening of the 
mush until (in this case) the latent heat has been 
removed at t,, = 1.806, when solidification is 
complete. The estimate of final segregation indicates 

Table 3 

St 
iW4- 

ASt, 
t&l 

removal of 
super-heat 

t 6, = St/St, L Segregation 
cessat;on of complete 
convection solidification 

ref case 0.6300 - 0.4127 0.5386 1.806 0.1841 
l.l- > 2.1(b) 6.300 0.1927 92510. 315.0 0.3421 5.386 18.06 13.06 
2.2(a) 0.063 0.4127 0.00539 0.0905 0.0001 
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................. ................. ................. ................. 4 ....... ......... ... - 
t’=5 min, M.172 

t’=30 min, tzl.033 t’=lO min, t=0.644 

t’=60 min, tr2.066 

Fig. 2. Velocity vectors and levels of solid fraction at different times for the reference case (2.2b). the right 
half of the mold is shown, with cooling from the right (c.f. Fig. 1). The solid fraction levels are 0.001, 0.2, 
0.4,0.6,0.8,0.99 and 0.999. An arrow of length equal to the spacing between two mesh points corresponds 

to a velocity of 1 cm s-‘. 

a moderate degree of segregation: a little less than the liquid region in Fig. 2. is a boundary layer free 
20% of the volume of the sample should have a com- convection type flow at early times, but velocities 
position significantly different from the initial one. decrease quickly and the boundary layer thickness 

Figure 2 shows simulated velocity vectors and solid increases. After about 8 min 20 s (t = 0.29) a thin 
fraction contours at different times. A mush is seen to mush spans the entire cavity. This is in reasonable 
grow rather quickly from the cooled wall. The flow in agreement with the estimated t, = 0.4127. 
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The further evolution of the mush is also in agree- 3. Now Bo’/4St/(ASt,) > 1 so that the flow is initially 
ment with the predictions. At t’ = 30 min (t = 1.033) described by range 1.1. The time required to remove 
the solid fraction is approximately linear away from the excess superheat is estimated to be trsh = 0.1927 (5 
the end walls and varies between 0.15 and 0.85, in min 36 s), when a narrow mush appears. The tem- 
agreement with the expectation that the mush should perature of the bulk liquid has then decreased, the 
have an order one width. The solidification time was corrected values B6 and Sts are listed in Table 3. These 
obtained as 1 h 12 min. (2.48 nondimensional), which lead to box 2.1 (b) in Table 1, and the remaining entries 
is in reasonable agreement with the order of mag- in the second row of Table 3 are calculated from 
nitude estimate 52 min (1.806 nondimensional) this. The liquid will now continue to cool towards the 
obtained above. After solidification perhaps 15% of temperature of the mush surface. This is expected to 
the area was occupied by enriched and depleted be completed after an additional time oft,, = 0.3421. 
regions, in reasonable agreement with the 18% esti- As discussed above, the mush is expected to cover the 
mate in Table 3. entire mold soon after. 

Case 1.1 and2.M 
In order to test the characteristics of the “low 

cooling rate” rang,e 2.1, a test was made for a case 
with the same set of dimensional parameters as above, 
except that the coaling heat flux q was decreased by a 
factor of 10. This changes St to St = 18.06, while all 
other nondimensional numbers are the same. 

The predicted solidification history is illustrated in 
Fig. 3, the quantitative predictions are listed in Table 

The evolution of the mush is thereafter governed 
by the ratio 6, = St/St,,,. Here 6, = 5.386 > 1, which 
indicates a mush with an 0( 1 /a,,,) solid fraction vari- 
ation. We thus expect the subsequent solidification to 
be a gradual increase in solid fraction, with a variation 
of solid fraction over the sample less than 0.2. The 
time for complete solidification is t,, = St. Here 
t,, = St = 18.1 is very long compared to the initial 
phase. 

Figure 4 shows the simulated velocity vectors and 

t < 0.193 
(5 min 36 s) 

Casa 1.1 
* Free convection, no mush. 

t=0.193 
Mush first appears. 
Case 2.lb subsequently. 

t=0.342+0.193 
(15 min 30s) 

The liquid pool has 
cooled, convection has 
ceased. Mush grows rapidly 
across the mold. The melt 
is possibly undercooled 
causing precipitation of 
free crystals 

0.535<t<18.1 
Mush covers the mold, 
solid fraction is 
approximately uniform. 
Slow solutal convection 
causes segregation. 

13.1 < t 
(8 h 44 min) 

Completely solid. 

Fig. 3. Sketch illustrating the predicted solidification history for case 1.1 and subsequent case 2.1 (b). 
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t’=6 min, t=0.2067 

t’=l6 min, t=O.6200 

I I I 

t’=9 min, t=O.3100 

t’=l5 min, t=0.5166 

Fig. 4. Velocity vectors and levels of solid fraction at different times for the 1.1 and subsequent 2.1 (b) case. 
The only solid fraction level that is shown is 0.001, solid fraction is less than 0.2 everywhere. An arrow of 

length equal to the spacing between two mesh points corresponds to a velocity of 1 cm SC’. 

contours of the solid fraction. After 6 min (t = 0.2067) liquid becomes weaker, until no flow at all is visible 
a narrow mush has just appeared and covers about at 15 min (t = 0.5166), and the mush fills the cavity 
half the height of the cooled wall, in good agreement at 18 min (t = 0.62). This is again in fair agreement 
with the estimate trsh = 0.193 in Fig. 3. The mush with the statement in Fig. 3 that the liquid region 
continues to grow while the convective flow in the should disappear at t = 0.535. 
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“._ . . .._. _._ . . .._._. _._ . . .._........... -.-* _._.“._ ._...... _ .-.-... I._ . . . . . . -** 

- - - - - t’=18 min, ta.820 
-0-.-m-e-. r= 3 h, tz6.20 
-------- r= 5 h, t40.33 
. . . . . . . . . . . . . . t’= 8 h, tz16.53 
- t’=lO h, k20.66 

Fig. 5. Soli’d fraction as a function of x along the mid height y = A/2 for the 2.1 (b) case, at different times. 

The subsequent solidification is shown in Fig. 5, 
which shows profiles of C#J vs x at different times, along 
the mid height y == 0.5. The qualitative picture in Fig. 
3 of a mush that solidifies uniformly is confirmed. 
Also the time for complete solidification is found to be 
11 h 5 min, or 22.90 nondimensional, in fair agreement 
with the estimate 8 h 44 min (18.06 nondimensional). 

The segregation parameter is 13.06 in Table 3, 
which should be interpreted to mean that the enriched 
and depleted regions have merged and that there is no 
region of initial composition left. The computed final 
segregation pattern is qualitatively consistent with this 
picture [21], but shows less segregation than expected. 
The estimate (A2.2) typically overpredicts segre- 
gation, but it is at least able to distinguish between 
large and small segregation. 

Case 2.2(a) 
In order to demonstrate a fast cooling range, a 

value of q = 6.101~ Wm2 was chosen, with all other 
dimensional parameters kept as for the reference case. 
As before, all nondimensional numbers are the same 
except St which is now decreased to 0.018. This par- 
ticular choice of q gives unrealistically large tem- 
perature differences, but the set of nondimensional 
numbers are perfiactly possible, and this case should 
be possible to realise with a different alloy. It will thus 
be discussed mainly in nondimensional terms. 

The predictions from Table 1 are given in Table 3. 
Here Bo”4St/ASt, < < 1, mush appears immediately. 
The values of the three Stefan numbers St,, St,, St 
lead to cell 2.2(a) in Table 1 and 2, which is a case 
where the mush is expected to form a narrow front 
which traverses the mold. The estimated width of this 
mush is 6, = 0.005 < < 1. The nondimensional sol- 
idification time is 0.0905. The time required for the 
liquid pool to cool is much longer, t, = 0.4127, so 

that convection in the liquid region will be vigorous 
throughout the solidification. 

Figure 6 shows velocity vectors and levels of solid 
fraction. As expected, the transition from solid to 
liquid is sharp, except for a small region ahead of the 
front. The significance of this is presently unclear. It 
may be a numerical artefact, since it is generally not 
wider than three mesh points. 

It is seen in Fig. 6 that the flow in the liquid region 
has a visible boundary layer character up to time 
t = 0.0517. At t = 0.0689, after the width of the liquid 
region has decreased to approximately the size of two 
boundary layer thicknesses, the liquid region has been 
replaced by a thin mush. This supports the conclusion 
above, that there is not time for the convection in the 
liquid region to decay before the sample is solidified. 

It was found that the mold was completely sold at 
approximately t = 0.10, in good agreement with the 
predicted t,, = 0.0905. The segregation estimate in 
Table 3 is very small, so there should be virtually 
no segregation here. This is in agreement with the 
simulation, where the variation of c, was within 0.3% 
of ci after solidification. 

5. CONCLUSIONS 

The aim of this paper is to find the different par- 
ameter ranges for an alloy solidifying from the side. 
Several assumptions have been made in the for- 
mulation of the basic equations, but still the treatment 
covers a broad class of binary systems and should be 
possible to extend easily. 

All possible combinations of three typical tem- 
perature differences are investigated, and for each one 
the dominating balance in the heat budget is found. 
All the different cases are summarised in Table 1, and 
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, . , I 

, , . . . , . . . ._ _- 

M.0689 

t=0.0861 

Fig. 6. Velocity vectors and levels of solid fraction at different times for the 2.2(a) case. The solid fraction 
levels are 0.00001, 0.2, ,0.4, 0.6, 0.8 and 0.999. An arrow of length equal to the spacing between two mesh 

points corresponds to a velocity of 1 cm SK’. 

the qualitative features of the most important ones 
are sketched in Table 2. 

The inequalities in the table involves St, St,, St,, 
Bo, A, Ra,. This is only six out of the nine independent 
nondimensional numbers in the nomenclature table. 
Thus it is concluded that the values of Le, Pr and Bo, 
are less significant as long as they satisfy the assump- 
tions Pr c 1, Le >> 1, that have been made. 

Table 1 covers all possible parameter combinations, 
so any solidification problem of this type corresponds 
to one particular cell. For each cell simple estimates 
for solidification time, the degree of segregation and 
the mode of freezing have been worked out. 

Some of the most important parameter ranges were 
investigated by time dependent simulation of the sol- 
idification process, and the results were compared to 
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the predictions in Table 1. The qualitative pictures 
were confirmed. Typically the estimates of times for 
solidification and undercooling are accurate within 
40% of the simulated values. The segregation estimate 
is less accurate for intermediate segregations, but it 
can certainly be used to determine if segregation is 
small or large. 
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APPENDIX 1 

Derivation of a simple model for cooling to constant wall 
temperature 
Here a simple model for the evolution of the mean fluid 
temperature in a container with side walls kept at a constant 
low temperature is derived. Related, more complete models 
have been developed in Ref. [29, 301. Here a much simpler 
model is derived, which is shown to agree quite well with 
complete simulations. 

For Bo >> 1 the heat transfer is 4 = kAT/H$Bo. 
AT/AT,)“4 for low Prandtl number fluids [22]. Defining 
AT as the average temperature in the bulk minus the wall 
temperature, a net heat budget for the liquid is 

aa - = _@W 
az 

(Al.1) 

where nondimensional variables r = ttc/HB. Bo”~, and 
0 = AT/AT, have been introduced. With the initial condition 
0 = 1, the solution is 

I 
1 @=-. 

(1 +r/4)4 
(A1.2) 

Viskanta, R., K.im, D. M. and Gau, C., Three-dimen- The prediction of eqn (Al .2) was compared to a complete 
sional natural convection heat transfer of a liquid metal numerical simulation, as shown in Fig. Al. 1. The agreement 
in a cavity. International Journal of Heat and Mass Trans- is quite sufficient for the present needs. 

18. 

19. 

Hills, R. N., Loper, D. E. and Roberts, P. H., A ther- 
modynamically consistent model of a mushy zone. Quar- 
terly Journal of Mechanics and Applied Maths, 1983, 36, 
505. 

1986. 29. 475485. This eauation is now used to derive an estimate of the time 
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Fig. Al. Bulk average temperature as a function of time. 

when the flow ceases to have boundary layer character. This 
is assumed to be a sufficient condition of the appearance 
of undercooling in the liquid region and formation of free 
equiaxed crystals. _ _ 

The boundarv laver thickness is 6 x 3.53 *H*(OBo)““. 
This must be less than half width B of the container; and’we 
take as the criterion for determining the time when con- 
vection ceases, that S = B/2. using eqn (A1.2), and intro- 
ducing the nondimensional time C_ = A* Bo-‘“r we get 

t cc = 0.57-~A*Bo-“~. (A1.3) 

APPENDIX 2 

Estimate of magnitude of segregations 
Here a crude estimate of the macrosegregation is derived. For 
a moderate segregation it is expected that enriched (depleted) 
liquid rises through the mush and forms an enriched 
(depleted) region at the top (bottom). 

For the narrow mush case, St/S?,,, -c 1, the composition 
variation across the mush is ci(l/kP- 1). Force balance 
between the Darcy term and the buoyant term gives 
Y _ R~J,. The total (dimensional) vertical transfer of alloy- 
ing element during time t is then (cl,-c,)(l -I#+)u* Bd; t, 
where clr = cJ(l--Cp,(l -k,)), and 4, = 0.2. As a non- 
dimensional measure of the degree of macrosegregation we 
will now use the ratio of an estimated size of the enriched 

area with composition clr, to the area of the upper half of the 
sample cross-section : 

(q,-q).2B.H/2 = a2(‘r’kp) A 
(for St/St, i 1) 

where 

(A2.1) 

Here 6, and t denote the nondimensional mush width and 
time, which are different in different parameter ranges. 

In the wide mush case, St/&, > 1, the corresponding esti- 
mate becomes (using q - S&,/St) : 

(qr - c,) 2B * H/2 
= a, (4 k ) Ra,#, 

r’ P z(for St/St, > 1) 

where 

(A2.2) 

If the segregation estimate is less than one, it should be 
interpreted as the fraction of the cross-section covered by 
enriched and depleted regions. In the opposite case, all the 
liquid in the sample has passed through the mush more than 
once, and the composition is changed over the entire mold. 


